Third Quarter 2005 Groundwater Monitoring Report

Former Fir Haven Shell Miranda, California Case No. 12748

Prepared for:

Mr. Eugene Sky

Reference: 001032

September 20, 2005

Mr. Mark Verhey Humboldt County Division of Environmental Health 100 H Street, Suite 100 Eureka, CA 95501

Subject: Groundwater Monitoring Report, Third Quarter 2005, Former Fir Haven Shell, Miranda, California; Case No. 12748

Dear Mr. Verhey:

This report presents the results of the groundwater monitoring for the third quarter 2005, at the Fir Haven Shell site.

If you have any questions, please call me at 707/441-8855.

Sincerely,

SHN Consulting Engineers & Geologists, Inc.

Frans B/Lowman, R.G.

Project Manager

SLD:med

Enclosure: Report

copy w/encl: Mr. Eugene Sky

Reference: 001032

Third Quarter 2005 Groundwater Monitoring Report

Former Fir Haven Shell Miranda, California Case No. 12748

Prepared for:

Mr. Eugene Sky

Prepared by:

Consulting Engineers & Geologists, Inc. 812 W. Wabash Avenue Eureka, CA 95501-2138 707/441-8855

September 2005

Table of Contents

			Page
1.0	Intro	oduction	1
	1.1	Organization of the Report	
	1.2	Background	1
2.0	Field	d Activities	2
	2.1	Monitoring Well Sampling	
	2.2	Laboratory Analysis	3
	2.3	Equipment Decontamination Procedures	3
	2.4	Investigation-Derived Waste Management	
3.0	Grou	undwater Monitoring Results	3
	3.1	Hydrogeology	3
	3.2	Groundwater Analytical Results	4
	3.3	Natural Attenuation Monitoring	5
4.0	Disc	russion and Recommendations	5
5.0	Refe	rences Cited	6
Appe	endices	s	
	A.	Historic Data	
	B.	Field Notes	
	C.	Laboratory Analytical Report	
List	t of Il	llustrations	

Tables		Page
1.	Groundwater Elevations, August 2, 2005	4
2.	Groundwater Analytical Results, August 2, 2005	4
3.	DO, DCO ₂ , and ORP Measurement Results, August 2, 2005	5
Figures	Follo	ows Page
_		1
1.	Site Location Map	
2.	Site Plan	1
3.	Groundwater Contours, August 2, 2005	3
4.	Petroleum Hydrocarbon Concentrations in Groundwater, August 2, 2005	

Acronyms and Abbreviations

< denotes a value that is "less than" the method detection limit

mV millivolts

ppm parts per million ug/g micrograms per gram ug/L micrograms per Liter

BGS Below Ground Surface

BTEX Benzene, Toluene, Ethylbenzene, and total Xylenes

DCO₂ Dissolved Carbon Dioxide

DIPE Diisopropyl Ether
DO Dissolved Oxygen
EC Electrical Conductivity

EPA U.S. Environmental Protection Agency

ETBE Ethyl Tertiary-Butyl Ether

HCDEH Humboldt County Division of Environmental Health

MTBE Methyl Tertiary-Butyl Ether

MW-# Monitoring Well-#
NA Not Analyzed
ND Not Detected
NS Not Sampled

ORP Oxidation-Reduction Potential
QA/QC Quality Assurance/Quality Control

SHN SHN Consulting Engineers & Geologists, Inc.

SP-# Soil Sample-#

TAME Tertiary-Amyl Methyl Ether
TBA Tertiary-Butyl Alcohol

TPHG Total Petroleum Hydrocarbons as Gasoline

UST Underground Storage Tank

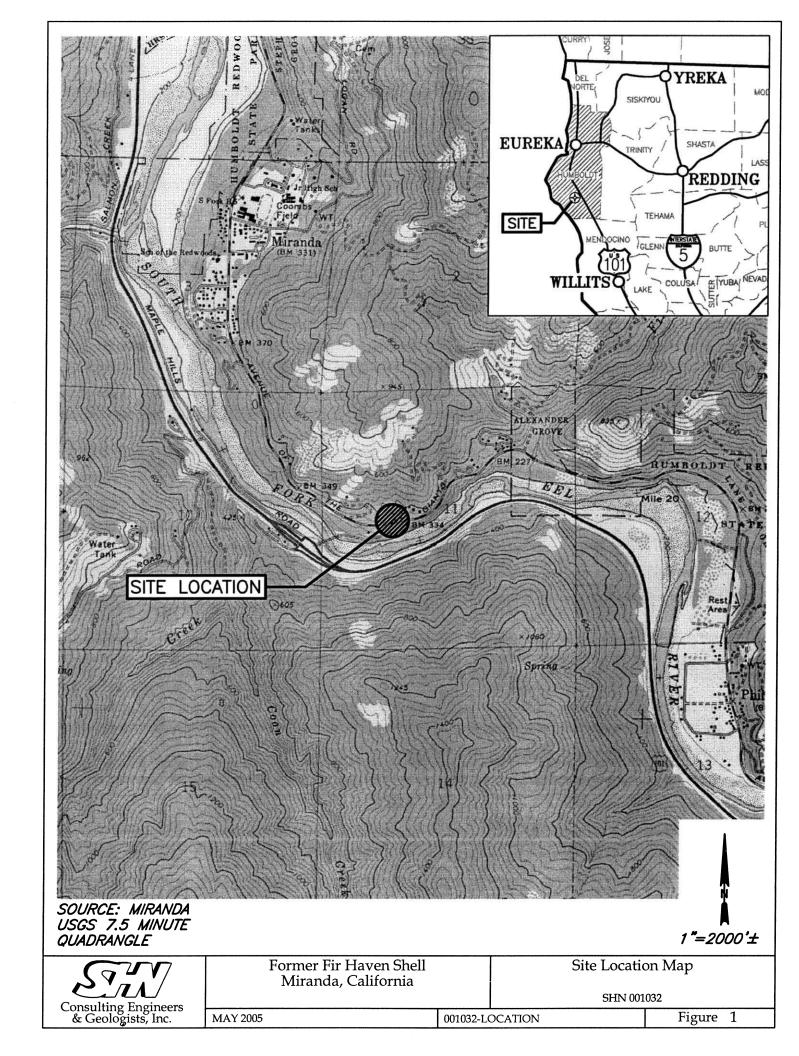
WP-# Well Point-#

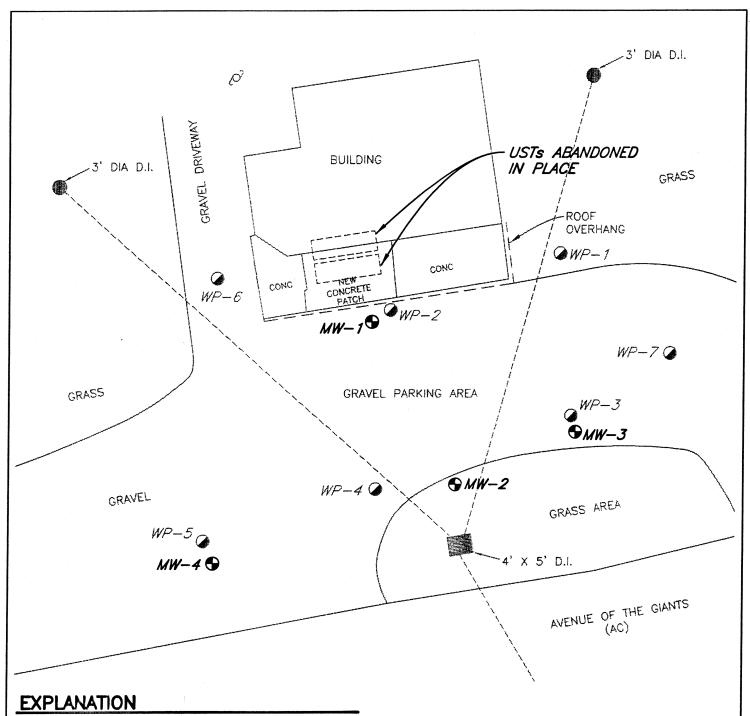
1.0 Introduction

This report presents the results of groundwater monitoring activities for the third quarter 2005, conducted at the former Fir Haven Shell (Case No. 12748). The site is located at 5251 Highway 254 in the community of Miranda, California (Figure 1). SHN Consulting Engineers & Geologists, Inc. (SHN) conducted groundwater monitoring on August 2, 2005, as requested by the Humboldt County Division of Environmental Health (HCDEH). A site plan of the subject property is included as Figure 2.

1.1 Organization of the Report

This report is presented in five sections. This section introduces the reader to the site. Section 2.0 discusses the scope of work completed at the site during the third quarter 2005, monitoring event. Section 3.0 presents the results of the groundwater monitoring program. Section 4.0 presents conclusions regarding the nature of the site, as well as recommendations for future activities. Section 5.0 presents a list of references cited.


1.2 Background


The subject site is the location of a former Shell service station. On March 29, 2001, North Coast Environmental Construction abandoned two Underground Storage Tanks (USTs) previously used to store gasoline. Both USTs were abandoned in place because removal of either UST may have compromised the integrity of an existing building. Both USTs were abandoned under permit from the HCDEH, by cleaning, then tremie filling each UST with a grout mixture. Representatives from the HCDEH were present during the UST abandonment. The locations of the former tanks are shown on Figure 2.

During the UST abandonments, two soil samples were collected by SHN from beneath the location of each tank (soil samples SP-1, SP-2, SP-3, and SP-4) by cutting holes through the bottom of the tanks to access the soil beneath. All four of the soil samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPHG); Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX); and Methyl Tertiary-Butyl Ether (MTBE). Additionally, soil sample SP-1 was analyzed for total lead, and the fuel oxygenates Diisopropyl Ether (DIPE), Ethyl Tertiary-Butyl Ether (ETBE), Tertiary-Amyl Methyl Ether (TAME), Tertiary-Butyl Alcohol (TBA), Methanol, and Ethanol.

TPHG was detected in all of the soil samples, at concentrations ranging from 760 micrograms per gram (ug/g), to 8,700 ug/g. Various components of BTEX were also present in each soil sample, including benzene at concentrations ranging from 0.77 ug/g to 5.4 ug/g. None of the fuel oxygenates, including MTBE, were detected in any of the soil samples submitted for analyses. Total lead was detected in soil sample SP-1 at a concentration of 41 ug/g. The historic soil analytical results are presented in Appendix A, Table A-1.

On July 19, 2001, SHN submitted a Site Investigation Work Plan to the HCDEH (SHN, July 2001). The proposed work plan was approved by the HCDEH on August 17, 2001.

WP-1 (SHN, NOVEMBER 2003)

MW-1 DESIGNATION (SHN, NOVEMBER 2004)

NOTE: BORING LOCATIONS ARE APPROXIMATE

STA	Former Fir Haven Shell Miranda, California		Site Pl SHN 001	
Consulting Engineers & Geologists, Inc.	DECEMBER 2004	001032-SI	1-DEC -04	Figure 2

On November 24, 2003, SHN supervised the drilling of seven exploratory soil borings (WP-1 through WP-7) at the Fir Haven Shell site (SHN, January 2004). The soil borings were drilled using a truck-mounted Geoprobe® rig operated by Fisch Environmental of Valley Springs, California. The soil borings were extended to a maximum depth of 28 feet Below Ground Surface (BGS). The exploratory soil boring locations are shown on Figure 2.

Soil samples were collected from each of the exploratory borings at various depths. Groundwater samples were also collected from two of the seven borings. Groundwater was not encountered in the remaining five borings. TPHG, BTEX constituents, and lead were detected in the soil samples, and TPHG and BTEX constituents were detected in groundwater samples (Appendix A, Tables A-1 and A-2).

In July 2004, SHN submitted a work plan for further investigative work, which was approved by the HCDEH on July 29, 2004.

On November 12 and 13, 2004, SHN supervised Mitchell Drilling of Eureka, California, in the installation of four additional exploratory soil borings (MW-1, MW-2, MW-3, and MW-4). The soil borings were extended to maximum depths ranging from 30 to 50 feet BGS. Due to a lack of water in borings MW-3 and MW-4, boring MW-2 was drilled to 50 feet BGS in order to assess the presence of groundwater and the depth to bedrock. The exploratory soil boring locations are shown on Figure 2. Soil samples collected from boring location MW-1 contained detectable concentrations of TPHG and BTEX components. BTEX components were also detected in the two soil samples collected from boring MW-4. The historic soil sample analytical data from the November 2004 site investigation are presented in Appendix A, Table A-1.

The four exploratory soil borings were subsequently converted into groundwater monitoring wells. On November 22, 2004, three of the existing groundwater monitoring wells were developed and sampled. Monitoring well MW-3 was dry at the time of the fieldwork, and as such, could not be developed or sampled. Wells MW-1, MW-2, and MW-4 were developed using surge and purge techniques. The groundwater samples collected from monitoring well MW-1 contained elevated concentrations of TPHG and BTEX. No detectable concentrations of any of these constituents were present in the groundwater samples collected from wells MW-2 or MW-4 (SHN, January 2005).

Groundwater beneath the Former Fir Haven Shell site is monitored on a quarterly basis, as requested by the HCDEH.

2.0 Field Activities

2.1 Monitoring Well Sampling

SHN completed the groundwater monitoring event on August 2, 2005. As part of the monitoring program, wells MW-1, MW-2, and MW-4 were purged and sampled. During purging activities, monitoring well MW-3 went dry, and as such, could not be sampled. Prior to commencing purging activities, all four monitoring wells were measured for depth to water and checked for the presence of floating product (none was observed). Electrical Conductivity (EC), pH, and temperature were

monitored periodically in wells MW-1, MW-2, and MW-4 during purging activities using portable instrumentation. All four monitoring wells were measured for Dissolved Oxygen (DO), Oxidation-Reduction Potential (ORP), and Dissolved Carbon Dioxide (DCO₂).

A groundwater sample was then collected from monitoring wells MW-1, MW-2, and MW-4 utilizing a disposable polyethylene bailer. The water samples were immediately placed in an ice-filled cooler, and submitted to the laboratory for analyses under appropriate chain-of-custody. Field notes and water sampling data sheets from the third quarter 2005, groundwater monitoring event are included in Appendix B.

2.2 Laboratory Analysis

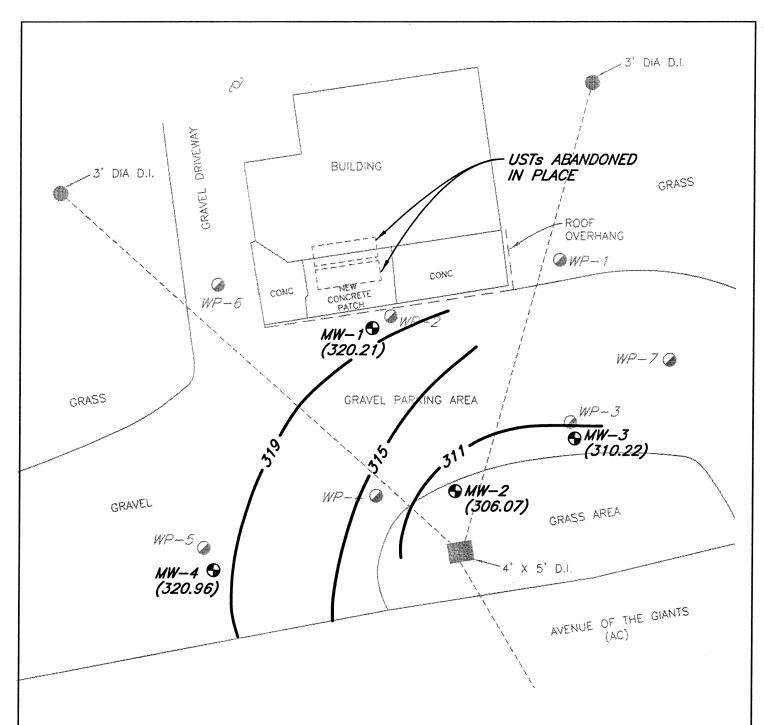
Each groundwater sample was analyzed for the following:

- TPHG, in general accordance with U.S. Environmental Protection Agency (EPA) Method Nos. 5030/GCFID/8015B.
- BTEX and MTBE, in general accordance with EPA Method Nos. 5030/8021B.

North Coast Laboratories, Ltd., a State-certified analytical laboratory located in Arcata, California, conducted all analyses.

2.3 Equipment Decontamination Procedures

All monitoring and sampling equipment was cleaned prior to being transported to the former Fir Haven Shell site. All smaller equipment was initially washed in a water solution containing Liquinox® cleaner, followed by a distilled water rinse, then by a second distilled water rinse.


2.4 Investigation-Derived Waste Management

All rinse water utilized for decontaminating field sampling equipment and the well purge water was temporarily stored on site in 5-gallon buckets. The water was then transported to SHN's 1,000-gallon purge water storage tank located at 812 West Wabash Avenue in Eureka, California. Approximately 29 gallons of decontamination and purge water from the August 2, 2005, groundwater monitoring event are being stored at SHN, and will be discharged, under permit, to the City of Eureka municipal sewer system. A discharge receipt will be included in the next quarterly groundwater monitoring report.

3.0 Groundwater Monitoring Results

3.1 Hydrogeology

SHN measured depth-to-groundwater in the existing groundwater monitoring wells on August 2, 2005. The results are summarized in Table 1. During this monitoring event, the direction of groundwater flow beneath the site was to the southeast, with an estimated gradient of 0.36. A groundwater contour map for the August 2, 2005, monitoring event is presented as Figure 3. Historic groundwater elevation data are presented in Appendix A, Table A-3.

EXPLANATION

SOIL BORING LOCATION AND DESIGNATION (SHN, NOVEMBER 2003)

MONITORING WELL LOCATION AND DESIGNATION (SHN, NOVEMBER 2004)

(320.21) GROUNDWATER ELEVATION IN FEET (NAVD88)

-311- GROUNDWATER CONTOUR IN FEET (NAVD88)

Consulting Engineers & Geologists, Inc. Former Fir Haven Shell Miranda, California Groundwater Contours August 2, 2005 SHN 001032

AUGUST 2005 001032-GWC-AUG-05

Figure 3

]	Groundwater Elev	able 1 vations, August 2, 20 hell, Miranda, Califo	
Sample Location	Top of Casing Elevation ¹ (feet)	Depth to Water ² (feet)	Groundwater Elevation (feet)
MW-1	339.23	19.02	320.21
MW-2	338.77	32.70	306.07
MW-3	339.02	28.80	310.22
MW-4	340.11	19.15	320.96
Referenced Below top		ertical Datum (NAVD)	88

3.2 Groundwater Analytical Results

The laboratory analytical results for the groundwater samples collected during the third quarter 2005, monitoring event are summarized in Table 2.

				esults, August 2, Miranda, Califor						
Sample Location	TPHG ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³ MTBE					
MW-1	53,0004	3,100	6,500	1,500	8,500	<3005,6				
MW-2	<50	< 0.50	< 0.50	< 0.50	< 0.50	<3.0				
MW-4	<50	< 0.50	< 0.50	< 0.50	< 0.50	<3.0				

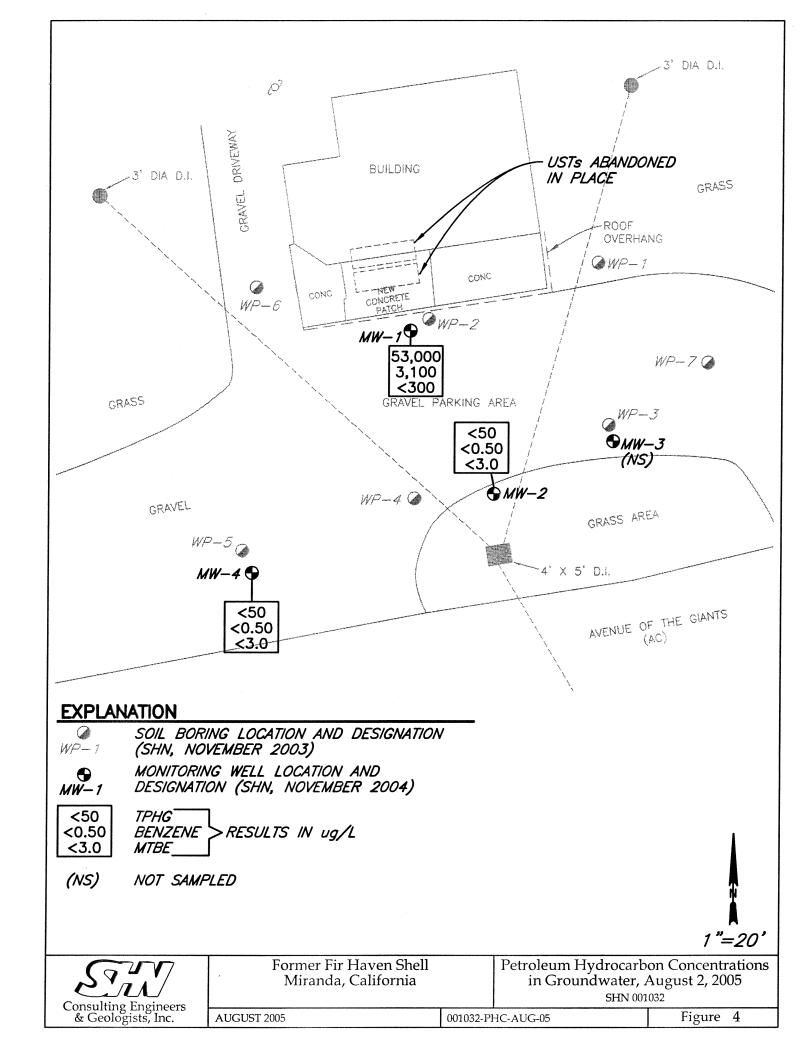
- 1. ug/L: micrograms per Liter
- Total Petroleum Hydrocarbons as Gasoline (TPHG), analyzed in general accordance with U.S. Environmental Protection Agency (EPA) Method Nos. 5030/GCFID/8015B
- 3. Benzene, Toluene, Ethylbenzene, total Xylenes, and Methyl Tertiary-Butyl Ether (MTBE), analyzed in general accordance with EPA Method Nos. 5030/8021B
- 4. Sample appears to be similar to gasoline, but certain peak ratios are not that of a fresh gasoline standard. The reported result represents the amount of material in the gasoline range.
- 5. <: Denotes a value that is "less than" the laboratory method detection limit.
- 6. Reporting limit was raised due to matrix interference

TPHG was detected in the groundwater sample collected from well MW-1, at a concentration of 53,000 micrograms per Liter (ug/L). Detectable concentrations of BTEX components were also present in this sample. The groundwater samples collected from wells MW-2 and MW-4 did not contain any detectable concentrations of either TPHG or BTEX. MTBE was not detected in any of the groundwater samples collected during the third quarter 2005, monitoring event. Monitoring well MW-3 was dry, after purging, on August 2, 2005, and as such, could not be sampled.

The concentrations of TPHG, benzene, and MTBE in groundwater on August 2, 2005 are shown on Figure 4. The complete laboratory test results, Quality Assurance/Quality Control (QA/QC) data, and chain-of-custody documentation are included in Appendix C. Historic groundwater monitoring data are presented in Appendix A, Table A-4.

3.3 Natural Attenuation Monitoring

Natural attenuation parameters DO, DCO₂, and ORP were measured in all four groundwater monitoring wells on August 2, 2005, prior to sampling, and are summarized in Table 3. During this monitoring event, DO concentrations ranged from 1.15 parts per million (ppm) in well MW-1, to 2.95 ppm in well MW-3. These DO concentrations appear to be sufficient to support biodegradation. DCO₂ concentrations ranged from 20 ppm in well MW-2, to 120 ppm in well MW-1, and indicate that biodegradation may be occurring in the vicinity of MW-1. ORP measurements ranged from -84 millivolts (mV) in well MW-1, to 135 mV in well MW-3, and indicate that oxidizing conditions exist in site groundwater away from the source area and reducing conditions exist in the source area. Historic DO, DCO₂, and ORP measurements are presented in Appendix A, Table A-5.


	Ta 2, and ORP Measu rmer Fir Haven Sh		
Sample Location	DO ¹ (ppm) ²	DCO ₂ ³ (ppm)	ORP ⁴ (mV) ⁵
MW-1	1.15	120	-84
MW-2	1.77	20	128
MW-3	2.95	60	135
MW-4	1.26	40	131

- 1. DO: Dissolved Oxygen, field measured using portable instrumentation
- 2. ppm: parts per million
- 3. DCO₂: Dissolved Carbon Dioxide, field measured using a field test kit
- 4. ORP: Oxidation-Reduction Potential; filed measurement using portable instrumentation
- 5. mV: millivolts

4.0 Discussion and Recommendations

During the third quarter 2005, monitoring event, the groundwater sample collected from monitoring well MW-1 contained elevated concentrations of TPHG and BTEX components. The groundwater samples collected from wells MW-2 and MW-4 did not contain detectable concentrations of either TPHG or BTEX. MTBE was not detected in any of the groundwater samples that were collected during this monitoring event.

Based on the results of this and the previous three groundwater monitoring events, it does not appear that the petroleum hydrocarbon plume present in the source area is migrating. No petroleum hydrocarbon constituents have been detected in any groundwater samples collected from monitoring wells MW-2, MW-3, or MW-4. However, the continued elevated petroleum



hydrocarbon constituents found in groundwater samples collected from well MW-1 indicate that significant petroleum hydrocarbon contamination is present in the source area and warrants additional investigation.

SHN recommends that a workplan for additional site investigation in the source area be completed, to more accurately define the vertical and lateral extent of petroleum hydrocarbon contamination in soil and groundwater. Once approval is received from the HCDEH, SHN will proceed with preparation of the workplan. As required by the HCDEH, SHN will continue quarterly groundwater monitoring at the site. The next groundwater monitoring event is scheduled for November 2005.

5.0 References Cited

- SHN Consulting Engineers & Geologists, Inc. (June 19, 2001). "Site Investigation Work Plan, Former Fir Haven Shell, 5251 Highway 254, Miranda, California, HCDEH LOP No. 12748." Eureka: SHN.
- ---. (June 19, 2001). "Monitoring Well Installation Work Plan, Former Fir Haven Shell, Miranda, California; Case No. 12748." Eureka: SHN.
- ---. (January 2004). Well point Investigation Report of Findings, Former Fir Haven Shell, Miranda, California; Case No. 12748. Eureka: SHN.
- ---. (January 2005). Groundwater Monitoring Well Installation Report of Findings, Former Fir Haven Shell, Miranda, California; Case No. 12748. Eureka: SHN.

& Geologists, Inc.
& Geologists, Inc.

			Total	$Lead^7$	NA	NA	NA	NA	<10	<10	<10	<10	<10	<10	12	<10	14	17	<10	<10	<10	<10	13	14	18	15	18	25	14
			Fuel	Oxygenates ⁶	${ m ND}^{10}$	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			ی ا	\mathbf{MTBE}^{\sim}	<0.20	<5.0	<5.0	<5.0	<0.050	<1.011	<0.050	<1.011	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<40	<0.050	<0.050	<0.050	<0.050
			4	o-Xylene*	NA	NA	NA	NA	<0.0050	<1.011	<0.0050	1.4	0.0078	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.042	0.012	120	<0.0050	<0.0050	<0.0050	<0.0050
	s lifornia	g) ¹	-d'm	Xylene ⁴	NA^8	NA	NA	NA	<0.0050	<0.40 ¹¹	<0.010 ¹⁴	4.4	0.019	<0.010 ¹³	<0.010 ¹³	<0.010 ¹³	<0.0050	<0.0050	<0.010 ¹³	<0.010 ¹³	<0.0050	<0.0050	<0.020	0.022	290	<0.0050	<0.0050	<0.0050	<0.0050
-1	Historic Soil Analytical Results Former Fir Haven Shell, Miranda, California		Total	Xylenes ³	730	308	295	77	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Table A-1	: Soil Analy ven Shell, N	(in ug/g) ¹	Ethyl-	Benzene ³	91	<3.0 ¹¹	9.4	1.6	<0.0050	<1.1 ¹¹	<0.0050	2.5	0.0054	<0.0050	<0.0050	<0.0050	<0.0050	<0.018 ¹¹	<0.0050	<0.0050	<0.0050	<0.0050	<0.020	0.011	7.1	<0.0050	<0.0050	<0.0050	<0.0050
	Historic			Toluene	110	<20 ¹¹	<i>L</i> 9	6.7	<0.0050	<0.20 ¹¹	<0.0050	0.92	<0.020 ¹¹	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	0.023	150	<0.0050	<0.0050	<0.0050	<0.0050
	For		£	Benzene	3.1	0.77	5.4	<0.50	<0.0050	$< 0.10^{11}$	<0.0050	3.2	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0089	20	<0.0050	<0.0050	<0.0050	<0.0050
			HB1102	TPHG-	002′8	3,000	2,500	092	<1.0	120^{12}	<1.0 ¹³	59 ¹⁵	<1.0	<1.0	<1.0	<1.0	<1.0	1.8^{12}	<1.0	<1.0	<1.0	<1.0	7.0 ^{12, 15}		$5,600^{15}$	<1.0	47.0	<1.0	<1.0
			Sample	Date	3/29/01	3/29/01	3/29/01	3/29/01	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/24/03	11/13/04	11/13/04	11/13/04	11/12/04	11/12/04	11/12/04	11/12/04
			Sample	Location	SP-1	SP-2	SP-3	SP-4	WP-1 @ 15-16'	WP-1 @ 23-24′	WP-2 @ 11-12'	WP-2 @23-24'	WP-3 @ 11-12'	WP-3 @ 23-24'	WP-4 @ 11-12'	WP-4 @ 21-22'	WP-5 @ 11-12'	WP-5 @ 18-19′	WP-6 @ 11-12'	WP-6 @ 21-22'	WP-7 @ 13-14′	WP-7 @ 25-26′	MW-1 @ 11-11.5'	MW-1 @ 16-16.5'	MW-1 @ 21.5-23'	MW-2 @ 15.5-16'	MW-2 @ 26-26.5'	MW-3 @ 15.5-16'	MW-3 @ 25-25.5′

G:\2001\001032 Fir Haven Shell\data HistData3rdQ05\Table A-1

SHN Consulting Engineers & Geologists, Inc.

Historic Soil Analytical Results Former Fir Haven Shell, Miranda, California (in ug/g)¹

Sample	Sample				Ethvl-	Total	m.p-			Fuel	Tota
Location	Date	$ $ TPHG 2	Benzene ³	Toluene ³	Benzene ³ Xylenes ³		4.	o-Xylene ⁴	$MTBE^5$	Oxygenates ⁶ Lead	Lead
MW-4 @ 17.5-18' 11/12/04	11/12/04	<1.0	<0.0050	0.0077	<0.0050	NA	0.0091	<0.0050	<0.050	NA	14
MW-4 @ 23.5-24′ 11/12/04	11/12/04	<1.0	<0.0050	0.0069	<0.0050	NA	0.0086	9900.0	<0.050	NA	10

1. ug/g: micrograms per gram

TPHG: Total Petroleum Hydrocarbons as Gasoline, analyzed in general accordance with U.S. Environmental Protection Agency (EPA) Method Nos. 5030 or 8260B

Benzene, Toluene, Ethylbenzene, and Total Exylenes, analyzed in general accordance with EPA Method Nos. 8020 or 8260B

m,p-Xylene and o-Xylene, analyzed in general accordance with EPA Method Nos. 5035/8021B

4

MTBE: Methyl Tertiary-Butyl Ether, analyzed in general accordance with EPA Method Nos. 8020 or 8260B 5. Fuel Oxygenates: Diisopropyl Ether (DIPE), Ethyl Tertiary-Butyl Ether (ETBE), Teritary-Amyl Methyl Ether (TAME), Tertiary-Butyl Alcohol (TBA), methanol, and ethanol, analyzed in general accordance with EPA Method No. 8260B

7. Total Lead, analyzed in general accordance with EPA Method No. 6010B

8. NA: Not Analyzed

9. <: Denotes a value that is "less than" the laboratory method detection limit.

10. ND: Not Detected; fuel oxygeneates not detcted above their respective method reporting limits; see laboratory reports.

11. Method reporting limit was raised due to matrix interference.

12. Sample does not represent a peak pattern consistent with that of gasoline. The reported results represent the amount of material in the gasoline range.

13. Sample was reported as non-detectable due to matrix interference.

. The reporting limit was raised due to an extracted interferant.

Sample appears to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported result represents the amount of material in the

Table A-2 Historic Groundwater Analytical Results Former Fir Haven Shell, Miranda, California (in ug/L)

Sample Location	Sample Date	TPHG ²	TPHD ³	B^4	T^4	E^4	X ⁴	MTBE ⁴
DW-1 ⁵	9/30/02	<50 ⁶	<50	<0.50	<0.50	<0.50	<0.50	<3.0
WP-1	11/24/03	490 ⁷	NA ⁸	5.3	<5.0 ⁹	9.3	6.2	<3.0
WP-2	11/24/03	2,700,000 ¹⁰	NA	15,000	72,000	100,000	660,000	<30,000 ⁹

- 1. ug/L: micrograms per Liter
- 2. TPHG: Total Petroleum Hydrocarbons as Gasoline, analyzed in general accordance with U.S. Environmental Protection Agency (EPA) Method Nos. 3510/GCFID/8015B
- 3. TPHD: Total Petroleum Hydrocarbons as Diesel analyzed in general accordance with EPA Method No. 3510/GCFID
- 4. Benzene (B), Toluene (T), Ethylbenzene (E), total Xylenes (X), and Methyl Tertiary-Butyl Ether (MTBE), analyzed in general accordance with EPA Method Nos. 5030/8021B
- 5. Groundwater sample collected from a domestic well located on the site property. Sample collected by HCDEH personnel.
- 6. <: Denotes a value that is "less than" the method detection limit.
- 7. The gasoline value includes the reported gasoline components and additives in addition to other peaks in the gasoline range.
- 8. NA: Not Analyzed
- 9. Reporting limit was raised due to matrix interference.
- 10. Sample appears to be similar to gasoline but certain peak ratios are not of a fresh gasoline standard; the reported result represents the amount of material in the gasoline range.

Table A-3 Historic Groundwater Elevations Former Fir Haven Shell, Miranda, California

Sample Location	Sample Date	Top of Casing Elevation (feet) ¹	Depth to Water ² (feet)	Groundwater Elevation (feet)
MW-1	11/20/04	339.23	19.95	319.28
	1/21/05		18.13	321.10
	5/11/05		17.73	321.50
	8/2/05		19.02	320.21
MW-2	11/20/04	338.77	32.78	305.99
	1/21/05		29.55	309.22
	5/11/05		27.73	311.04
	8/2/05		32.70	306.07
MW-3	11/20/04	339.02	DRY ³	
	1/21/05		27.44	311.58
	5/11/05		26.70	312.32
	8/2/05		28.80	310.22
MW-4	11/20/04	340.11	22.68	317.43
	1/21/05		18.09	322.02
	5/11/05		16.82	323.29
	8/2/05		19.15	320.96

^{1.} Referenced to North American Vertical Datum (NAVD) 88

^{2.} Below top of casing

^{3.} Well was dry on November 20, 2004. As such, a depth to water measurement could not be collected.

Table A-4 Historic Groundwater Monitoring Well Analytical Results Former Fir Haven Shell, Miranda, California (in ug/L)¹

Sample Location	Sample Date	TPHG ²	B^3	T^3	E ³	X ³	MTBE ³
MW-1	11/20/04	53,000 ⁴	4,300	5,900	1,600	8,600	<600 ^{5,6}
	1/21/05	26,000	3,200	2,500	870	3,900	<300 ⁶
	5/11/05	35,000 ⁴	2,800	4,000	980	5,200	<300 ⁶
	8/2/05	53,000 ⁴	3,100	6,500	1,500	8,500	<300 ⁶
MW-2	11/20/04	<50	<0.50	<0.50	<0.50	<0.50	<3.0
	1/21/05	<50	<0.50	< 0.50	<0.50	<0.50	<3.0
	5/11/05	<50	<0.50	< 0.50	<0.50	<0.50	<3.0
	8/2/05	<50	<0.50	< 0.50	<0.50	<0.50	<3.0
MW-3	11/20/04	NS ⁷	NS	NS	NS	NS	NS
	1/21/05	<50	<0.50	<0.50	<0.50	<0.50	<3.0
	5/11/05	<50	<0.50	<0.50	< 0.50	<0.50	<3.0
	8/2/05	NS	NS	NS	NS	NS	NS
MW-4	11/20/04	<50	<0.50	<0.50	< 0.50	<0.50	<3.0
	1/21/05	<50	<0.50	< 0.50	<0.50	<0.50	<3.0
	5/11/05	<50	<0.50	<0.50	<0.50	<0.50	<3.0
	8/2/05	<50	<0.50	<0.50	< 0.50	<0.50	<3.0

- 1. ug/L: micrograms per Liter
- 2. TPHG: Total Petroleum Hydrocarbons as Gasoline, analyzed in general accordance with U.S. Environmental Protection Agency (EPA) Method Nos. 3510/GCFID/8015B or 5030/GCFID/8015B
- 3. Benzene (B), Toluene (T), Ethylbenzene (E), m,p-Xylene, o-Xylene, and Methyl Tertiary-Butyl Ether (MTBE), analyzed in general accordance with EPA Method Nos. 5030/8021B
- 4. Sample appears to be similar to gasoline, but certain peak ratios are not that of a fresh gasoline standard. The reported result represents the amount of material in the gasoline range.
- 5. <: Denotes a value that is "less than" the method detection limit.
- 6. Reporting limit raised due to matrix interference
- 7. NS: Not Sampled

Table A-5
Historic DO, DCO₂, and ORP Measurement Results
Former Fir Haven Shell, Miranda, California

Sample	Sample	DO^1	DCO_2^{3}	ORP ⁴
Location	Date	(ppm) ²	(ppm)	$(mV)^5$
MW-1	1/21/05	2.09	180	-67
	5/11/05	0.05	150	-90
	8/2/05	1.15	120	-84
MW-2	1/21/05	4.96	30	93
:	5/11/05	4.00	30	208
	8/2/05	1.77	20	128
MW-3	1/21/05	5.26	60	116
	5/11/05	1.83	60	145
	8/2/05	2.95	60	135
MW-4	1/21/05	2.04	40	104
	5/11/05	0.05	40	175
	8/2/05	1.26	40	131

- 1. DO: Dissolved Oxygen, field measured using portable instrumentation
- 2. ppm: parts per million
- 3. DCO₂: Dissolved Carbon Dioxide, field measured using a field test kit
- 4. ORP: Oxidation-Reduction Potential; filed measurement using portable instrumentation.
- 5. mV: millivolts

480 Hemsted Drive * Redding, CA 96002* Tel: 530.221.5424 * FAX: 530.221.0135 *E-mail: shninfo@shn-redding.com 812 W. Wabash * Eureka, CA 95501 * Tel: 707.441.8855 * FAX: 707.441.8877 *E-mail: shninfo@shn-engr.com

DAILY FI	JOB NO 001032										
		Page 1 of 8									
PROJECT NAME FORMER Firhaven Shell	CLIENT/OWNER Eugene Sky	DAILY FIELD REPORT	SEQUENCE NO								
GENERAL LOCATION OF WORK Miranda CH	OWNER/CLIENT REPRESENTATIVE	8-2-05	DAY OF WEEK								
TYPE OF WORK YIGHT FRIT Sampling	WEATHER Clege	PROJECT ENGINEER/									
SOURCE & DESCRIPTION OF FILL MATERIAL	KEY PERSONS CONTACTED	David R. K) aine								
DESCRIBE EQUIPMENT USED FOR HAULING. SPRE	ADING, WATERING, CONDITIONING, & COMPACTING										
0827 arrived at site,	Removed lids and caps	on all 4									
0918 I started taking w	with liquinox than Rinsing it	the sounder	after each								
well by scrubbing it		with DI w	ater.								
Start + d taking	DO Readings	j									
	w-3 with a disposable bailer , anded I gal. bucket, well i	punga wat	en was								
1004 I started Duraina Mw		vent dry.	1.10.0								
	1-4 with a dispusable bailer p	ukg é worken	4195								
1031 I started punging mw-2 with a disposable bailer punge water was cought											
W // . / _	in a graduated 5 gal, bucket.										
	1	nw-3 had	no Richarge								
	so then was no somple secured will with cop and lid.										
4i i	ecured well with cap and lie										
1158 I started purging 1		punge wa	ten was								
caught in a gradu	ated 3 gal, backet.										
1250 I sampled MW-1	secured well with cap and	lid.									
1255 OFF SITE											
11 1 11 1											
Note: All dewn water and	punge water was equalit in	5 gal. buc	Kers with								
lids then transported	punga water was equalit in to SIAN's 1,000 gal. PNST ERRERA, CA 29 gallous total.	located a	1/ 0/2 W,								
Wabash Huenne Ed	ineka, CH 27 gallous roral.										
		0 . 4 4									
COPY GIVEN TO:	REPORTED BY:	David R. Par	ie								

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

Groundwater Elevations

Job No.: 001032		Name:	David R. 1	aine
Client: EUGENE	SKY	Date:	8.2.05	
Location: MIRANE	OA, CA	Weathe	er: Clear	
Sample Location	Time of Reading	Top of Casing Elevation (feet)	Depth To Water (feet)	Water Surface Elevation (feet)
MW-1	0927	339.23	19.02	320.21
MW-2	0925	338.77	32.70	306,07
MW-3	0918	339.02	28.85	310,22
MW-4	0923	340.11	19.15	320,96
				-

EQUIPMENT CALIBRATION SHEET

Name: David R. Painz
Project Name: Former Firhauen Shell
Reference No.: 001032
Date: 8-2-05
Equipment: PID GTCO2 GTLEL Turbidity Other Dissolved Oxygen Meter 45192
Description of Calibration Procedure and Results:
pH eEc meter is calibrated using a 2 buffer method with 7:01 and 4:01, the Ec (conductivity) is
set at 1413 x15.
DD meter is self colibrating with the
Altimeter set at 3.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

			Water	r Samplin	g Da	ta Sł	neet		•
Project I	Name: Form	er Fir	Haven	Shell	Date/	Time	: 8	2-05	
Project 1		032			Samp	ler Na	-) g j`n-c
Location		anda CA			Samp	le Typ		und water	
Well #: Mw - (her	Cle		
Hydroc	arbon Thickn	ess/Depth (feet):	NA	Key N	Jeede		~ .	hin
Total Well (fee		Initial Depth Water (feet		Height of Water Column (feet)	r x		53 gal/ft (2-inc 53 gal/ft (4-inc		1 Casing Volume (gal)
30,0	5 - [19.02	=	11.03	x	O.	163	=	1.80
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	1	mp F)	pН	Water Removed (gal)	Comments
1158	(1.15)	120	-84					0.25 gal	
1214				457		90	6.49	2 gal, 3,25 gal.	
1221	V			470		7,10	6.51	3,25 gal.	
1228	No Flow			469	6/.	70	6.59	5,30 gal.	
	then cell					······································			
					ļ				
		·····							
		·							
1250	Sample	Time							
Pu	urge Method: _	Hand Be	ail	_		Tota	al Volume Re	emoved: <u>5, -</u>	50 (gal)
Laborato	ory Informat	ion							
	ple ID	# & T	ype of	Preservati	ve /	La	aboratory	A	Analyses
m. s /			ainers	Type	i _{ci}	510	;	701/01/23	27/275
MW - 1		3-40m	I DOM'S	YES M	CL	Na	<u> </u>	1779/ 3/	EJ/MIBE
L	·	<u> </u>				<u> </u>	*		
	Well Conditi	ion: Good							
	Rema	rks: Purge	water K	145 Gn 00	Jor				
		Pasta	1 1	. 1200	- 1			4,	

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

0			Water	r Samplin	g Da	ta Sł	neet				
Project I	Vame: Form.	er Fir	Haven	Shell	Date/	Time	:	8-	2 ~0	5	
Project 1		032			Samp	ler Na	ame:	Davio		_ /) gjin-c
Location		anda CA			Samp	le Typ	pe:	GROU	in d	water	
Well #:		- 2			Weatl	her		Clea			
Hydroca	arbon Thickn	ess/Depth (feet):	NA	Key N	Jeede		YES		Dol	ohin
Total Well (fee		Initial Depth Water (feet		Height of Wate Column (feet)			63 gal/ft 53 gal/f				1 Casing Volume (gal)
50,17		32.70	=	17.47	x	O.	163] =	2.85
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	1	mp F)	p	Н	Rem	ater loved (al)	Comments
1031	(1.77)	20	128						0,25	gal	
1044	·		•	237	62	90	6.5	00		gal,	
1053			***	256	61.		6.6		/	gal.	
1103	No Flow	-		272	62.	70	6.5	9	9 8	791,	
145	then cell		Notes and the second se	296	62.	40	6.7	9	12	9 <i>91.</i>	Andrew Control of the
4 5				320	63	3,40	6.7	6	150	gal.	
1155	Sample	Time									
	urge Method: - Ory Informat:		ail	_		Tota	al Volu	me Rei	moved	l: <u>15,</u>	oo (gal)
	ple ID		ype of	Preservat	ive /	La	aborat	ory	1	F	Analyses
		1	ainers	Type							
MW - 2)	3-40m	1 UDA'S	yes h	1CL	NC	<u>L</u>		TPH	6/B7	# MIBE
									-	<u>'</u>	
									<u> </u>		
						<u></u>					
	Well Condit	ion: Good							harron and a second conference of the second c		
	Rema	rks:									
		Recha	rgid 1	o 37,5	3 at	So	mpl-	٠ .	time		



812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

			Water	Samplin	g Da	ta Sh	eet				
Project 1	Name: Form	er Fir	Haven	Shell	Date/	Time:	ځ	3-2-0	5		
Project 1		032			Samp	ler Nar	ne: 🗓	avid K	C. P.	O Gina	
Location		anda CA			Samp	le Type	e: Ç	secund			
Well #:		ı - 3 [']			Weatl	her		Clear			_
Hydroc	arbon Thickn	ess/Depth (feet):	NA	Key N	Veed e d		'ES	Dol	ohin	_
Total Well (fee	t)	Initial Depth Water (feet		Height of Wate Column (feet)				inch well) inch well)		1 Casing Volum (gal)	ıe
29.3	5 - [28.80	=	035	x	0.10	63		_ =	0,09	
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	1	mp F)	рН	1	iter oved al)	Comments	
0945	2.95	60	135					0,10			\neg
0955			•					0,10	gal	DRY	
1029	V		_			,		$ \mathcal{O}^{\prime\prime}\rangle$	sal.	Dey	
1129	No Flow	/						0.10	901,	DRY	
	then cell	/	VO_	$\downarrow \mathcal{O}_{\mathcal{C}}$	W	1//	<u>e</u>	•	<i>.</i>	,	
<u> </u>			X C								
		THE TRANSPORT									
					ļ						
					-						_
	Sample	Time	L								
Pu	urge Method: -	Hand B	ail	_		Total	Volume	e Removed	: <u>0.1</u>	(gal)	
Laborato	ory Informat	ion									
	ple ID	# & T	ype of ainers	Preservati Type		Lal	orator	у	A	Analyses	
Mw - 3		3-40m	I von's		CL	NCL		7911	3 / Bi	ElmiBE	
				/					1	- / - /	

	Well Condit	ion: Good						•			
	Rema		sample	no A	eecha	ege,					
		Recha	. 7	10	- 1	ege Son	n da	time			
-		1 2 2 7 3 4	7				1	,,,,,			

CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

*			Water	Samplin	g Dat	a Sh	eet		
Project 1	Name: Form .	er Fir	Haven	Sh = 11	Date/	Time:	8	-2-05	
Project					Sampl	er Na		d R. Pa) 3 j n-c
Location		anda CA		-	Sampl			and water	
Well #:		4			Weath			g R	
Hydroc	arbon Thickno		feet):	MA	Key N	leeded	l: YES	Dolp	hin
Total Wel		Initial Depth Water (feet		Height of Wate Column (feet)			3 gal/ft (2-incl 3 gal/ft (4-inc		1 Casing Volume (gal)
29.3	32 -	19.15	= [10.17	x	0.1	63	=	1.66
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Ter (°)	- 1	рН	Water Removed (gal)	Comments
1004	1.26	40	131					0,25 901	
1013			•	584	64,	90	1,00	1.75 gal.	
1018				588	64.	10	7,01	3,25 gal.	
1024	No Flow			588	64,	3°	7,08	5 gal.	
<u> </u>	then cell								
					-				
1140	Samp/€ urge Method:	lime T	ĭ				137-1 Do		(gal)
Pi	urge Method: _	Hand B	ail			1 Ota	ii volume Ke	emoved: <u>5,0</u>	<u>oo</u> (gal)
Laborat	ory Informat	ion							
San	nple ID		ype of ainers	Preservat Type		La	boratory	A	Analyses
mw	1	3-40m	1 UON'S	YES /	YCL	NC	-	TPHG / B1	W/MIBE
								/	
	-								
	Well Condit	ion: C							
	Rema								
	iveilla		/	10 22.41	7 - 1		·	time	

August 15, 2005

SHN Consulting Engineers and Geologists 812 West Wabash Avenue Eureka, CA 95501

Attn: Frans Lowman

RE: 001032, Former Firhaven Shell

SAMPLE IDENTIFICATION

Fraction	Client Sample Description	
01 A	MW-4	
02A	MW-2	
03A	MW-1	

Order No.; Invoice No.:

0508075 52055

PO No.:

ELAP No. 1247-Expires July 2006

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director North Coast Laboratories, Ltd.

Date: 15-Aug-05

CLIENT:

SHN Consulting Engineers and Geologists

Project:

001032, Former Firhaven Shell

Lab Order:

0508075

CASE NARRATIVE

TPH as Gasoline:

Sample MW-1 appears to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported result represents the amount of material in the gasoline range.

BTEX:

Sample MW-1 was reported as ND with a dilution due to matrix interference.

The surrogate recovery for sample MW-2 was outside of the acceptance limits. The surrogate recoveries for the quality control samples were within acceptance limits. This indicates that the low surrogate recovery may be due to matrix effects from the sample.

Date:

15-Aug-05

WorkOrder: 0508075

ANALYTICAL REPORT

Received: 8/2/05

Collected: 8/2/05 11:40

Lab ID: 0508075-01A

Client Sample ID: MW-4

Test Name: BTEX

Reference: EPA 5030/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
MTBE	ND	3.0	μg/L	1.0		8/11/05
Benzene	ND	0.50	μġ/L	1.0		8/11/05
Toluene	ND	0.50	μg/L	1.0		8/11/05
Ethylbenzene	ND	0.50	μg/L	1.0		8/11/05
m,p-Xylene	ND	0.50	μg/L	1.0		8/11/05
o-Xylene	ND	0.50	μg/L	1.0		. 8/11/05
Surrogate: Cis-1,2-Dichloroethylene	88.8	85-115	% Rec	1.0		8/11/05

Reference: EPA 5030/GCFID(LUFT)/EPA 8015B Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	50	μg/L	1.0		8/11/05

Client Sample ID: MW-2

Lab ID: 0508075-02A

Received: 8/2/05

Collected: 8/2/05 11:55

Test Name: BTEX	Reference: EPA 5030/EPA 8021B								
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>			
MTBE	ND	3.0	μg/L	1.0		8/11/05			
Benzene	ND	0.50	μg/L	1.0		8/11/05			
Toluene	ND	0.50	μg/L	1.0		8/11/05			
Ethylbenzene	ND	0.50	μg/L	1.0		8/11/05			
m,p-Xylene	ND	0.50	μg/L	1.0		8/11/05			
o-Xvlene	ND	0.50	μg/L	1.0		8/11/05			
Surrogate: Cis-1,2-Dichloroethylene	74.6	85-115	% Rec	1.0		8/11/05			

Test Name: TPH as Gasoline

Reference: EPA 5030/GCFID(LUFT)/EPA 8015B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	50	μg/L	1.0		8/11/05

Date:

15-Aug-05

WorkOrder: 0508075

ANALYTICAL REPORT

Client Sample ID: MW-1

Received: 8/2/05

Collected: 8/2/05 12:50

Lab ID: 0508075-03A

Test Name: BTEX

Reference: EPA 5030/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	Analyzed
MTBE	ND	300	μg/L	100		8/11/05
Benzene	3,100	500	μg/L	1,000		8/11/05
Toluene	6,500	500	μg/L	1,000		8/11/05
Ethylbenzene	1,500	500	μg/L	1,000		8/11/05
m,p-Xylene	6,000	500	μg/L	1,000		8/11/05
o-Xvlene	2,500	500	μg/L	1,000		8/11/05
Surrogate: Cis-1.2-Dichloroethylene	88.8	85-115	% Rec	100		8/11/05

Reference: EPA 5030/GCFID(LUFT)/EPA 8015B Test Name: TPH as Gasoline

<u>Limit</u> <u>Units</u> $\overline{\mathbf{DF}}$ Extracted **Analyzed** Result **Parameter** 8/11/05 5,000 μg/L 100 TPHC Gas (C6-C14) 53,000

North Coast Laboratories, Ltd.

CLIENT: Work Order:	SHN Consulting Engineers and Geologists 0508075	Geologists					ð	SUM	QC SUMMARY REPORT	REPO	RT
Project:	001032, Former Firhaven Shell				·				Me	Method Blank	ark
Sample ID: MB-8/10/05	/05 Batch ID: R36350	Test Code: BTXEW	BTXEW	Units: µg/L		Analysis	Analysis Date: 8/10/05 10:58:58 PM	58 PM	Prep Date:		
Client ID:		Run ID:	ORGC8_050810C	310C		SeqNo:	522924				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	ıfVal	%RPD RP	RPDLimit	Qual
MTBE ·	QN	3.0									
Benzene	QN	0.50									
Toluene	ND	0.50							•		
Ethylbenzene	QN	0.50									
m,p-Xylene	QN	0.50									
o-Xylene	QN	0.50									
Cis-1,2-Dichloroethylene	lene 0.878	0.10	1.00	0	87.8%	82	115	0			
Sample ID: MB-8/10/05	/05 Batch ID: R36349	Test Code:	Test Code: TPHCGW	Units: µg/L		Analysis	Analysis Date: 8/10/05 10:58:58 PM	:58 PM	Prep Date:		
Client ID:		Run ID:	ORGC8_050810B	810B		SeqNo:	522901				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	g Val	%RPD RP	RPDLimit	Qual
TPHC Gas (C6-C14)	QN .	50	American de la companya de la compa					***************************************		,	

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Laboratory Control Spike

QC SUMMARY REPORT

North Coast Laboratories, Ltd.

SHN Consulting Engineers and Geologists 001032, Former Firhaven Shell 0508075 Work Order: CLIENT: Project:

Sample ID: LCS-05507	Batch ID: R36350	Test Code: BTXEW	BTXEW	Units: µg/L		Analysis	Date: 8/10/0	Analysis Date: 8/10/05 8:03:29 PM	Prep Date:	te:	
Client ID:		Run ID:	ORGC8_050810C	200		SeqNo:	522922				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit . HighLimit		RPD Ref Val	%RPD	RPDLimit	Qual
MTBE	38.06	3.0	40.0	0	95.2%	85	115	0			
Benzene	4:770	0.50	5.00	0	95.4%	85	115	0			
Toluene	4.871	0.50	5.00	0	97.4%	82	115	0			
Ethylbenzene	4.902	0.50	2.00	0	98.0%	85	115	0			
m,p-Xylene	9.598	0.50	10.0	0	96.0%	82	115	0			
o-Xylene	4.634	0.50	5.00	0	92.7%	85	115	0			
Cis-1,2-Dichloroethylene	0.901	0.10	1.00	0	90.1%	82	115	0			
Sample ID: LCSD-05507	Batch ID: R36350	Test Code: BTXEW	BTXEW	Units: µg/L		Analysis	Date: 8/10/0	Analysis Date: 8/10/05 8:38:35 PM	Prep Date:	ite:	
Client ID:		Run ID:	ORGC8_050810C	100		SeqNo:	522923				
Analyte	Result	. Cimit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
MTBE	37.12	3.0	40.0	0	92.8%	85	115	38.1	2.50%	15	
Benzene	4.631	0.50	5.00	0	92.6%	82	115	4.77	2.96%	15	
Toluene	4.691	0.50	5.00	0	93.8%	85	115	4.87	3.76%	15	
Ethylbenzene	4.783	0.50	5.00	0	95.7%	82	115	4.90	2.46%	15	
m,p-Xylene	9.371	0.50	10.0	0	93.7%	82	115	9.60	2.39%	15	
o-Xylene	4.538	0.50	5.00	0	90.8%	88	115	4.63	2.08%	15	
Cis-1,2-Dichloroethylene	0.874	0.10	1.00	0	87.4%	85	115	0.901	3.07%	15	
Sample ID: LCS-05508	Batch ID: R36349	Test Code: TPHCGW	TPHCGW	Units: µg/L		Analysis	Date: 8/10/0	Analysis Date: 8/10/05 9:13:35 PM	Prep Date:	ıte:	
Client ID:		Run ID:	ORGC8_050810B	10B		SeqNo:	522899				
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Gas (C6-C14)	515.8	20	200	0	103%	84	126	0			

Qualiffers:

ND - Not Detected at the Reporting Limit

I - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

CLIENT:	SHN Consulting Engineers and Geologists	Geologists			TOO STIMMADY DEPOPE
Work Order:	0508075				C SOMEMENT INET ON
Project:	001032, Former Firhaven Shell	. A			Laboratory Control Spike Duplicate
Sample ID: LCSD-05508	-05508 Batch ID: R36349	Test Code: TPHCGW Units: µg/L	Units: µg/L	Analysis Date: 8/	Analysis Date: 8/10/05 9:48:43 PM Prep Date:
Client ID:	*	Run ID: ORGC8 050810B	MOB	SeaNo: 522900	0062

Limit ည

Result 504.9

TPHC Gas (C6-C14)

Analyte

SPK va	Ine	SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit	RPD Ref Val	₩.	%RPD R	RPDLimit	Quai
u,	200	0	101%	84	126	516	2.1	2.14%	15	
								:		
		•								
								٠		
							**	¥		
		÷								
S	ds-	S - Spike Recovery outside accepted recovery limits	cepted rec	overy limits	B	B - Analyte detected in the associated Method Blank	d in the as	sociated	Method Blan	يد ا
22	2 - RI	R - RPD outside accented recovery limits	verv limit	,						
i	1	T Outsing accepture that	Very man	q						

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

NORTH COAST	LABORATORIES LTD.	5680 West End Road • Arcata • CA 95521-9202 707-822-4649 Fax 707-822-6831
(E	大学	De la company de

Chain of Custody

	,	•
- 	•	
)		
)		

LABORATORY NUMBER:

of

نه.

Manie Com Com Com Committee	3.0(1)	TAT: \$\alpha 24 \text{ Hr} \alpha 48 \text{ Hr} \alpha 5 \text{ Day} \alpha 5-7 \text{ Day}
	9	🙀 STD (2–3 Wk) □ Other:
Address: 812 West Wabash Avenue	N:184	PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES
Eureka, CA 95501	22 Z	REPORTING REQUIREMENTS: State Forms □
Phone: 441-0033	6 VIN	Preliminary: FAX□ Verbal□ By:_/
Copies of Report to:	000	Final Report: FAX □ Verbal □ By:/
Sampler (Sign & Print): Denil R. Panic David K. Paine	39	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl;
PROJECTINEORMATION	SITW	3-500 ml pl; 4-1 L Nalgene; 5-250 ml BG; 6-500 ml BG; 7-1 L BG; 8-1 L cg; 9-40 ml VOA;
Project Number: 001032	/\r\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other
Project Name: FORMER FiRhOVEN Shell		PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ;
Purchase Order Number:	54/	$d-Na_2S_2O_3$; e-NaOH; f-C ₂ H ₃ O ₂ Cl; g-other
LABID SAMPLE ID DATE TIME MATRIX*		SAMPLE CONDITION/SPECIAL INSTRUCTIONS
M3 041 5018B		
MW. 3 '' 1155	×	EDF
V 1350 V	X	
		Slobe 1 I De 7 060 235 1110
REINQUISHED BY (Sign & Print) DATE/TIME	RECHVED BY (Sign) DATE/TIME	SAMPLE DISPOSAL No. 1 Disposal of Non-Contaminated
David R. Pavie Javid R. Paine 8/2/65 Je	muit Mant	
	Λ	CHAIN OF CUSTODY SEALS Y/N/NA
	,	SHIPPED VIA: UPS Air-Ex Fed-Ex Bus Hand
*MATDIY: DW-Dripking Water: Eff-Effluent: Inf-Influent	ient: SW-Surface Water: GW=Ground Water: S=Soil: O=Other	er: S=Soil: O=Other

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW

ALL CONTAMINATED NON-AQUEOUS SAMPLES WILL BE RETURNED TO CLIENT